
 

________________________________________ 
 
*Corresponding author: Email: b.shei@yahoo.com, sheibaba@uds.edu.gh; 

 

Cite as: Sayibu, Shei Baba, Sualihu Mohammed Muntaka, and Alhassan Mubarika. 2024. “One-Sided Cusum Chart With V-Mask for 
Weighted Weibull Distribution Parameter Shifts”. Asian Journal of Probability and Statistics 26 (12):234-52. 

https://doi.org/10.9734/ajpas/2024/v26i12695. 

 

 
 

 

Asian Journal of Probability and Statistics 

 
Volume 26, Issue 12, Page 234-252, 2024; Article no.AJPAS.128079 
ISSN: 2582-0230 

 

 
______________________________________________________________________________________________________________________________________________________ 

 

One-sided Cusum Chart with V-mask for 

Weighted Weibull Distribution Parameter 

Shifts 
 

Shei Baba Sayibu a*, Sualihu Mohammed Muntaka a  

and Alhassan Mubarika b 

 
a Department of Statistics, Faculty of Physical Sciences, University for Development Studies,  

Tamale, West Africa, Ghana. 
b Department of Statistical Science, Tamale Technical University, Tamale, West Africa, Ghana. 

 

Authors’ contributions 

 

This work was carried out in collaboration among all authors. All authors read and approved the final 

manuscript. 

 

Article Information 
 

DOI: https://doi.org/10.9734/ajpas/2024/v26i12695 

 
Open Peer Review History: 

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers,  peer review 

comments, different versions of the manuscript, comments of the editors, etc are available here: 
https://www.sdiarticle5.com/review-history/128079 

 

 

Received: 07/10/2024 

Accepted: 14/12/2024 

Published: 21/12/2024 

__________________________________________________________________________________ 
 

Abstract 

 
In our research, we have developed a cumulative sum control chart to identify changes in the parameter of the 

weighted Weibull distribution. This chart incorporates the V-mask technique and a sequential ratio test. Our 

analysis of the V-mask revealed that even minor shifts in the weighted Weibull distribution's parameters led 

to significant variations in the mask's angle, lead distance, and average run length. A change in the V-mask 

parameters has the following importance: it can lead to an increase in false alarms, decreased detection of 

true signals, change in process capability, indicates the need for process adjustments, increased security from 

regulatory bodies, impact on supply chain and customer relationships, and the need for re-training or re-
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certification. Finally, we applied the cumulative sum chart to real data from the Kabsad Scientific Hospital to 

illustrate the sensitivity of the proposed cumulative sum control chart. The V-mask plot showed a shift in the 

process mean of the dataset.  

 

 

Keywords: Deviations; flexibility; inadequacy; sensitivity; and variability. 

 

1 Introduction  
 

Product quality features have recently received much attention from design engineers, production personnel, and 

consumers. It has increasingly become apparent that improving product quality can decrease the cost of 

production and increase consumer satisfaction, culminating in a high percentage of profits. 
 

Control charts are used widely as a diagnostic tool for monitoring production and services to identify instability 

and circumstances that are unusual in the process. A defect of the traditional Shewhart control chart is its 

inadequacy in detecting a relatively small change in a process mean. This is largely the consequence of whether 

a process is judged out of control at a particular time depends only on the sample at that time and not on the 

history of the process (Devore, 2012). Cumulative sum (CUSUM) control charts are statistical process control 

tools used to monitor process mean shifts based on system samples at given intervals. The intervals could be 

hours, days, weeks, or months. It makes use of the cumulative sum of deviations from a given point. It is a 

powerful technique for monitoring and controlling processes, particularly when the shift is small compared to 

the process variability. The CUSUM chart plots the cumulative sum deviations from the target point for 

individual measurements or subgroup means. It indicates the accumulative information of previous and current 

samples. Given this reason, the CUSUM control charts are more effective than the Shewhart control charts in 

detecting small shifts in the process mean. The CUSUM control chart depends on the specification of a target 

value and a known or reliable variance estimate. This makes the CUSUM chart a better tool in process control 

management. The CUSUM chart is flexible, sensitive to small shifts, enhances quality control, and is easy to 

implement. It is good for monitoring processes with small shifts, improving process stability, and reducing false 

alarms in systems. The CUSUM charts are useful in manufacturing, chemical processing, finance, and 

healthcare systems management. A one-sided CUSUM chart is used to detect shifts in one direction, either 

right-side or left-side. It is particularly applied when only one type of shift is of interest or when the process is 

more sensitive to shifts in one direction. The one-sided CUSUM's importance includes but is not limited to 

tracking vital signs such as blood pressure, heart rate, or oxygen saturation.  Evaluation of quality of care, such 

as patient satisfaction, readmission, or complication rates. Monitoring infection rates, and antibiotic resistance of 

hospital-acquired infections, detecting trends or anomalies in stock prices, trading volumes, or market indices; 

monitoring financial risk, like credit risk, market risk, or operational risk. In environment monitoring, it can be 

used to track pollutants such as particulate matter, ozone, or nitrogen dioxide; monitor water quality parameters 

such as PH, turbidity, or bacteria contamination; and detect changes in climate patterns, such as temperature, 

precipitation, or sea level rise. Other importance includes, monitoring supply chain performance, such as lead 

times, inventory levels, or shipping errors, detect anomalies in network traffic, system logs, or user behavior. 

The first CUSUM control chart was introduced by Page (1954) and has since been widely used in various 

industries for monitoring and controlling processes. Other published works on CUSUM included combined 

Shewhart-CUSUM quality control scheme (Lucas, 1982), cumulative sum control charting (Hawkins, 1993), 

statistical design of CUSUM charts (Woodall and Adams, 1993), exact results for Shewhart control charts with 

supplementary run rules (Champ and Woodall, 2001), one-sided CUSUM control chart for the Erlang-Truncated 

exponential distribution (Rao, 2013), one-sided cumulative sum control chart for monitoring shifts in the shape 

parameter of the Pareto distribution (Nasiru, 2016), one-sided cumulative sum control chart for monitoring shift 

in the scale parameter, delta of the new Weibull-Pareto distribution (Sayibu et al., 2017), unified sum control 

chart for monitoring shifts in the parameters of the Pareto distribution (Sayibu and Maahi, 2017), two-sided 

cumulative sum control chart for monitoring shifts in the shape parameter of the Pareto distribution (Sayibu and 

Luguterah, 2018), distribution-free CUSUM control charts using bootstrap-based control limits (Zhang and 

Woodall, 2019), how to use a CUSUM chart for process improvement (Doganaksov and Hahn, 2020), CUSUM 

analysis (Grigg and Farewell, 2020), CGR-CUSUM: a continuous time generalized rapid response cumulative 

sum (Xie and Goh, 2022), efficient Monitoring of a Parameter of Non-Normal Process Using a Robust Efficient 

Control Chart: A Comparative Study (Chaudhary et al., 2023), on efficient change point detection using a step 

cumulative sum control chart (Abass, 2023), efficient CUSUM control charts for monitoring the multivariate 

coefficient of variation (Hu et al., 2023), a robust CUSUM control chart for median absolute deviation based on 
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trimming and winsorization (Khalil et al., 2024), proper choice of location CUSUM control charts for different 

environments (Nazir et al., 2024), a new CUSUM control chart under uncertainty with applications I petroleum 

and meteorology (Aslam et al., 2024), and control charts in health care quality monitoring (Waqas et al., 2024) 

among others. 
 

The rest of the study is organized as follows: section 2 discusses the sequential probability ratio test, and 

weighted Weibull distribution is covered under Section 3. The cumulative sum control chart is enumerated in 

Section 4, average run length is treated in Section 5, practical application is illustrated in Section 6 and Section 7 

covers the conclusion.  
 

2 Sequential Probability Ratio Test 
 

The sequential probability ratio test (SPRT) is a statistical test used to determine whether a process or system is 

stable or unstable.  The test is performed sequentially, with data points added one after the other. The test 

calculates the ratio of probabilities of the data under two hypotheses and the test statistic is the cumulative sum 

of the logarithms of the probability ratios. It includes the following steps: defining the null and alternative 

hypotheses and setting the significance level, ( )  and power ( )1 − . The rest are, calculating the test statistic 

for each new data point and comparing the test statistic to the upper and lower boundaries. If the test statistic 

crosses the upper boundary, reject the null hypothesis, thus out of control. On the other hand, if the test statistic 

crosses the lower boundary; accept the null hypothesis which means the system is in control. If the test statistic 

remains within the limits, continue the sampling process. The SPRT is efficient, flexible, and powerful.  By way 

of illustration, Wald’s SPRT is widely used for determining between two alternative hypotheses, 
0 0

:H  =  

and 
1 1

:H  = . Let 
1 2
, ,...,

n
x x x  denote successive observations of a random variable X  which are 

independent and identically distributed and follow the weighted Weibull distribution (WWD). If the probability 

of observing 
1 2
, ,...,

n
x x x  is given by ( )i

P n  when 
i

H  is true ( )0,1i = . If the pdf of the random variable is 

( )i
f x  when 

i
H  is true, then 

 

( ) 1
( ), ..., ( )

i i i n
P n f x f x=  

 

Given two constants A and B such that 0A    and 0B  , Wald’s sequential test of 
i

H  against 
0

H  is given as 

follows. At the th
n  sampling stage, the logarithm of the probability ratio is 

 

( )
( )

( )

( )

( )
1 1 1

0 0 1

; ,...,
log log

; ,...,

n

n

P n L X X
n K

P n L X X





= =  , 

 

is calculated. The Wald’s SPRT has the following nature 
 

• If ( )n A  , then terminate the observation and accept 
i

H as true 

• ( )n A   then decide that 
0

H  is true and terminate the process 

• ( )A n B  , continue to collect more observations to obtain 
1n


+

. 

 

The SPRT is optimal as it minimizes the average sample size before a decision can be made within all sequential 

tests which do not have larger error probabilities than the SPRT. Furthermore, the boundaries A and B can be 

determined with a very good approximation as  
 

log
1

A



=

−
 and 

1
logB





−
= . 

 

3 Weighted Weibull distribution 
 

The weighted Weibull distribution (WWD) was developed by (Nasiru, 2015). It is said to be very flexible 

among other competing models. The cumulative density function (CDF) of the WWD is given by 
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( )
( )( )

, , , 1
x x

F x e


  

  
− +

= − ,                                                                                                               (1) 

 

where 0, 0, 0, 0x       ,    is a shape parameter,   and   are scale parameters. 

 

The corresponding probability density function (pdf) is obtained by differentiating the CDF in (1) and is given 

as 

 

( ) ( )
( )( )1

, , , 1
x x

f x x e


   
    

− +
−

= +  .                                                                                           (2) 

 

The hazard function is defined as the ratio of the PDF to the survival function. This is presented as  

 

( )
( )

( )( )

( )( )

1
1

x x

x x

x e
H x

e





   

  

 
− +

−

− +

+
= .                                                                                                      (3) 

 

The quantile function which is very useful in generating random numbers from the distribution is obtained as  

 

( )
( )

( )

1

log 1

1

u
x u




 

 − −
 =

+ 
 

,                                                                                                                         (4) 

 

where u  is the uniform distribution within the interval 0 and 1. 

 

4 V-Mask 
 

The CUSUM control chart is realized by plotting the sum 
1

ln
n

n i

i

S x
=

=  versus the number of observations n  . 

the V-mask is very important in determining the status of a system. The process is achieved by placing a V-

mask on the final plotted CUSUM points in line with 
1

OS  or 
1

OS
−

 parallel to the axis m . The points plotted 

earlier are then investigated to determine if they are found above or below the arms of the V-mask. If all the 

points fall within the two arms of the V-mask, then the process is judged to be in-control. On the other hand, if 

the past plotted points are outside the arms of the V-mask, then the process is assumed to be out of out-of-

control. 

 

 
 

Fig. 1. V-mask 
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5 Cumulative Sum Control Chart of the WW Distribution 
 

If 
1 2
, ,...,

n
x x x  are randomly independent and identically distributed variables and follow the WWD, then the 

likelihood ratio for testing the hypotheses that there is a shift in   and keeping other parameters fixed, is given 

as 

 

0 0
:H  =  

 

1 1
:H  =  

 

Likelihood function for (2) when there is no shift in the scale parameters is  

 

( )
( )( )0 01

0 0

1

1
n

x x

i

L x e


   
 

− +
−

=

 
= + 

 
 .                                                                                               (5) 

 

The likelihood function for a shift in the scale parameters is 

 

( )
( )( )1 11

1 1

1

1
n

x x

i

L x e


   
 

− +
−

=

 
= + 

 
 .                                                                                               (6) 

 

The likelihood ratio ( )R
L  of (5) and (6) is given as 

 

( )
( )( )

( )
( )( )

1 1

0 0

1

1

1

1

0

1

1

1

n
x x

i

R n
x x

i

x e

L

x e





   

   

 

 

− +
−

=

− +
−

=

 
+ 

 
=

 
+ 

 





.                                                                                              (7) 

 

This is simplified as 

 

( )( ) ( )( )1 1 0 01

1 0

n
x x x x

R

i

L e
  

     



− + + +

=

 
=  

 
 .                                                                                                  (8) 

 

Further simplification yields 

 

1 1 0 0

1 11

0

n n

i i

i i

n
x x x x

R
L e

     
     



= =

   
   − + + +
   
   

  
=  
 

.                                                                                               (9) 

 

The continuation region of the SPTR differentiating between the two hypotheses is given by 

 

1

1
R

L
 

 

−
 

−
, 

 

where   and   are the types I and II errors. Substituting (9) in the continuation region gives 

 

1 1 0 0

1 11

0

1

1

n n

i i

i i

n
x x x x

e

     
      

  

= =

   
   − + + +
   
   

   −
  

−  

.                                                                              (10) 

 

Taking the natural logarithm of both sides gives 
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1 1 0 0

1 11

0

1
log log

1

n n

i i

i i

n
x x x x

e

     
      

  

= =

   
   − + + +
   
   

   −   
     

−    

 .                                                          (11)                                   

 

If 0 = , then  
 

1

1 1 0 0

1 10

1
log log

n n

i i

i i

n x x x x
     

     
 = =

       
− + + +       

     
  .                                                     (12)                                     

 

Factorizing yields 
 

( ) 1

0 1 0 1

1 0

1
log log

n

i

i

x n
   

     
 =

  
− + −  −   

   
 .                                                                          (13)                                                 

 

simplifying gives 
 

( )

1

1

1

0

1
0 1 0 1

11 1log log
n

i

i

n

x



 



  

     =

  
−   

   


− + −
 .                                                                                                     (14) 

 

Writing (14) in the form
1

n

i

i

x bx q
=

 + , gives 

 

where 

( ) ( )
1

0 1 0 1

11 log

q
 

 

    

  
−   

  
=

 − − − − 

  and 

( ) ( )

1
1

0

1

0 1 0 1

1
logn

b



 



 

    

 
 
 

=

 − − + − 

. 

 

The mark angle is obtained as  
 

( ) ( )

1

01

1

0 1 0 1

1
log

tan
 



 


    

−

  
  

  =
 

 − − + −  
  

. 

 

5.1 Effects of right-side and left-side shifts in the value of gamma on the mask angle 
 

Table 1 shows the effect of both right and left shifts in the value of gamma on the mask angle. The first part 

indicates the right shift and the second part shows the values of the left shift. The angle of the mask decreases in 

value when the shift in gamma is to the right. On the other hand, when there is a left shift in the value of gamma, 

the angle increases. 
 

5.2 Effects of right-side and left-side shift in gamma on the lead distance 
 

The lead distance of the V-mask is the distance between the last point plotted and the angle of the mask. It 

represents the maximum allowable deviations from the center line before a point is considered out of control. A 

larger lead distance shows: wider control limits, greater tolerance for variation, and reduced sensitivity to small 

shifts in the process. On the other hand, a smaller lead distance indicates a narrow control limit, less tolerance 

for variation, and increased sensitivity to small shifts in the process. It is by 
 

 , where  and . 

 

( ) ( )
1

0 1 0 1

11 log

d
 

 

    

  
−   

  
=

 − − − − 

1 0
 

1 0
 
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A right shift in the value of gamma causes the lead distance to decrease and a left shift in gamma leads to an 

increase in the value of the lead distance as indicated in the second part of Table 2. 

 

Table 1. Effect of Right and left shift of gamma on the angle 

 

0
  

1
        

0.001 0.01 2 5.0 78.5 

0.001 0.05 2 5.0 56.9 

0.001 0.09 2 5.0 44.2 

0.001 0.12 2 5.0 37.7 

0.001 0.18 2 5.0 29.2 

0.001 0.23 2 5.0 24.5 

0.001 0.29 2 5.0 20.7 

0.001 0.31 2 5.0 19.6 

0.001 0.36 2 5.0 17.5 

0.001 0.40 2 5.0 16.1 

0
  

1
        

0.1 0.2 2 5.0 7.6 

0.1 0.13 2 5.0 9.5 

0.1 0.09 2 5.0 11.5 

0.1 0.05 2 5.0 14.9 

0.1 0.02 2 5.0 21.2 

0.1 0.015 2 5.0 23.2 

0.1 0.007 2 5.0 28.8 

0.1 0.005 2 5.0 31.2 

0.1 0.003 2 5.0 34.8 

0.1 0.001 2 5.0 41.8 

 

Table 2. Effect of Right and left shift in gamma on the lead distance 

 

0
  

1
        d  

0.1 0.4 0.01 0.2 0.03 97.1 

0.1 0.7 0.01 0.2 0.03 48.5 

0.1 1.0 0.01 0.2 0.03 32.4 

0.1 1.3 0.01 0.2 0.03 24.3 

0.1 1.8 0.01 0.2 0.03 17.1 

0.1 2.3 0.01 0.2 0.03 13.2 

0.1 2.9 0.01 0.2 0.03 10.4 

0.1 3.4 0.01 0.2 0.03 8.8 

0.1 3.6 0.01 0.2 0.03 8.3 

0.1 4.0 0.01 0.2 0.03 7.5 

0
  

1
        d  

4 3.9 12 0.1 2 - 245.7 

4 3.4 12 0.1 2 - 41.0 

4 3.0 12 0.1 2 - 24.6 

4 2.6 12 0.1 2 - 17.6 

4 2.1 12 0.1 2 - 12.9 

4 1.7 12 0.1 2 - 10.7 

4 1.3 12 0.1 2 - 9.1 

4 0.8 12 0.1 2 - 7.7 

4 0.3 12 0.1 2 - 6.6 

4 0.09 12 0.1 2 - 6.3 

 

An increase in the value of lambda from 0.01 to 12 with a right shift in gamma, increases the value of the lead 

distance and causes a decrease in lambda from 0,01 to 0.008 with a right-side shift in gamma, decreases the 

value of the lead distance as displayed in Table 3. 
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Table 3. Increase and decrease in the value of lambda with a right-side shift in gamma 

 

0
  

1
        d  

0.1 0.4 10.0 0.2 0.03 - 99.9 

0.1 0.7 10.0 0.2 0.03 - 50.0 

0.1 1.0 10.0 0.2 0.03 - 33.3 

0.1 1.3 10.0 0.2 0.03 - 25.0 

0.1 1.8 10.0 0.2 0.03 - 17.6 

0.1 2.3 10.0 0.2 0.03 - 13.6 

0.1 2.9 10.0 0.2 0.03 - 10.7 

0.1 3.4 10.0 0.2 0.03 - 9.1 

0.1 3.6 10.0 0.2 0.03 - 8.6 

0.1 4.0 10.0 0.2 0.03 - 7.7 

0
  

1
        d  

0.1 0.4 0.008 0.2 0.03 94.4 

0.1 0.7 0.008 0.2 0.03 47.2 

0.1 1.0 0.008 0.2 0.03 31.5 

0.1 1.3 0.008 0.2 0.03 23.6 

0.1 1.3 0.008 0.2 0.03 23.6 

0.1 1.8 0.008 0.2 0.03 16.7 

0.1 2.3 0.008 0.2 0.03 12.9 

0.1 2.9 0.008 0.2 0.03 10.1 

0.1 3.4 0.008 0.2 0.03 8.6 

0.1 3.6 0.008 0.2 0.03 8.1 

0.1 4.0 0.008 0.2 0.03 7.3 

 

However, both increases (0.01 to 10) and decreases (0.01 to 0.008) in lambda with either right side or left side 

shift in gamma have increasing effects on the value of the lead distance as shown in Table 4. 

 

Table 4. Changes in the value of lambda with left and right shifts in gamma 

 

0
  

1
        d  

4 3.9 10.0 0.1 2 - 198.4 

4 3.4 10.0 0.1 2 - 33.1 

4 3.0 10.0 0.1 2 - 19.8 

4 2.6 10.0 0.1 2 - 14.2 

4 2.1 10.0 0.1 2 - 10.4 

4 1.7 10.0 0.1 2 - 8.6 

4 1.3 10.0 0.1 2 - 7.3 

4 0.8 10.0 0.1 2 - 6.2 

4 0.3 10.0 0.1 2 - 5.4 

4 0.09 10.0 0.1 2 - 5.0 

0
  

1
        d  

4 3.9 0.008 0.1 2 - 396.9 

4 3.4 0.008 0.1 2 - 66.2 

4 3.0 0.008 0.1 2 - 39.7 

4 2.6 0.008 0.1 2 - 28.4 

4 2.1 0.008 0.1 2 - 20.9 

4 1.7 0.008 0.1 2 - 17.3 

4 1.3 0.008 0.1 2 - 14.7 

4 0.8 0.008 0.1 2 - 12.4 

4 0.3 0.008 0.1 2 - 10.7 

 

Furthermore, both increases (0.1 to 0.9) or decreases (0.1 to 0.05) in the value of alpha with a right shift in 

gamma decrease the value of the lead distance The details are shown in Tables 5. 
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Table 5. Effect of changes in alpha with a right shift in gamma 

 

0
   

1
        d  

0.1 0.4 0.01 0.9 0.03 13.2 

0.1 0.7 0.01 0.9 0.03 6.6 

0.1 1.0 0.01 0.9 0.03 4.4 

0.1 1.3 0.01 0.9 0.03 3.3 

0.1 1.8 0.01 0.9 0.03 2.3 

0.1 2.3 0.01 0.9 0.03 1.8 

0.1 2.9 0.01 0.9 0.03 1.4 

0.1 3.4 0.01 0.9 0.03 1.2 

0.1 3.6 0.01 0.9 0.03 1.1 

0.1 4.0 0.01 0.9 0.03 1.0 

0
   

1
        d  

0.1 0.4 0.01 0.05 0.03 1136.6 

0.1 0.7 0.01 0.05 0.03 568.3 

0.1 1.0 0.01 0.05 0.03 378.9 

0.1 1.3 0.01 0.05 0.03 284.2 

0.1 1.8 0.01 0.05 0.03 200.6 

0.1 2.3 0.01 0.05 0.03 155.0 

0.1 2.9 0.01 0.05 0.03 121.8 

0.1 3.4 0.01 0.05 0.03 103.3 

0.1 3.6 0.01 0.05 0.03 97.4 

0.1 4.0 0.01 0.05 0.03 87.4 

 

Again, both increase (0.1 to 0.9) and decrease (0.1 to 0.01) in alpha with a left-side shift in gamma increasing 

the value of the lead distance. The details are presented in Table 6. 

 

Table 6. Effect of changes alpha with a left-side shift in gamma 

 

0
   

1
        d  

4 3.9 20 0.9 2 - 0.92 

4 3.4 20 0.9 2 - 0.15 

4 3.0 20 0.9 2 - 0.09 

4 2.6 20 0.9 2 - 0.07 

4 2.1 20 0.9 2 - 0.05 

4 1.7 20 0.9 2 - 0.04 

4 1.3 20 0.9 2 - 0.03 

4 0.8 20 0.9 2 - 0.03 

4 0.3 20 0.9 2 - 0.02 

4 0.09 20 0.9 2 - 0.02 

0
   

1
        d  

4 3.9 12 0.01 2 - 27549.2 

4 3.4 12 0.01 2 - 4591.5 

4 3.0 12 0.01 2 - 2754.9 

4 2.6 12 0.01 2 - 1967.8 

4 2.1 12 0.01 2 - 1450.0 

4 1.7 12 0.01 2 - 1197.8 

4 1.3 12 0.01 2 - 1020.3 

4 0.8 12 0.01 2 - 860.9 

4 0.3 12 0.01 2 - 744.6 

4 0.09 12 0.01 2 - 704.6 

 

Moreover, an increase (2 to 9) and decrease (2 to 0.5) in the value of theta with a right-side shift in gamma 

decreases the lead distance as detailed in Table 7. 
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Table 7. Effect on changes in theta with a right-side shift in gamma 

 

0
  

1
        d  

0.1 0.4 0.01 0.2 9 33.3 

0.1 0.7 0.01 0.2 9 16.7 

0.1 1.0 0.01 0.2 9 11.1 

0.1 1.3 0.01 0.2 9 8.3 

0.1 1.8 0.01 0.2 9 5.9 

0.1 2.3 0.01 0.2 9 4.5 

0.1 2.9 0.01 0.2 9 3.6 

0.1 3.4 0.01 0.2 9 3.0 

0.1 3.6 0.01 0.2 9 2.9 

0.1 4.0 0.01 0.2 9 2.6 

0
  

1
        d  

0.1 0.4 0.01 0.2 0.5 127.5 

0.1 0.7 0.01 0.2 0.5 63.8 

0.1 1.0 0.01 0.2 0.5 42.5 

0.1 1.3 0.01 0.2 0.5 31.9 

0.1 1.8 0.01 0.2 0.5 22.5 

0.1 2.3 0.01 0.2 0.5 17.4 

0.1 2.9 0.01 0.2 0.5 13.7 

0.1 3.4 0.01 0.2 0.5 11.6 

0.1 3.6 0.01 0.2 0.5 10.9 

0.1 4.0 0.01 0.2 0.5 9.8 

 

Another observation is that an increase (2 to 9) in the value of theta with a left-side shift in the value of gamma 

increases the value of the lead distance. On the other hand, a decrease (2 to 0.5) in the value of theta with a left-

side shift in the value of gamma decreases the value of the lead distance as indicated in Table 8. 

 

Table 8. Effect of changes in theta with a left-side shift in gamma 

 

0
  

1
        d  

4 3.9 12 0.1 9 - 778.9 

4 3.4 12 0.1 9 - 129.8 

4 3.0 12 0.1 9 - 77.9 

4 2.6 12 0.1 9 - 55.6 

4 2.1 12 0.1 9 - 41.0 

4 1.7 12 0.1 9 - 33.9 

4 1.3 12 0.1 9 - 28.8 

4 0.8 12 0.1 9 - 24.3 

4 0.3 12 0.1 9 - 21.1 

4 0.09 12 0.1 9 - 19.9 

0
  

1
        d  

4 3.9 12 0.1 0.5 245.7 

4 3.4 12 0.1 0.5 41.0 

4 3.0 12 0.1 0.5 24.6 

4 2.6 12 0.1 0.5 17.6 

4 2.1 12 0.1 0.5 12.9 

4 1.7 12 0.1 0.5 10.7 

4 1.3 12 0.1 0.5 9.1 

4 0.8 12 0.1 0.5 7.7 

4 0.3 12 0.1 0.5 6.6 

4 0.09 12 0.1 0.5 6.3 
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6 Average Run Length 
 

Average Run length (ARL) is the average number of samples or observations taken before a control chart 

signals an out-of-control condition. It measures the effectiveness of a control chart in detecting process shifts. A 

smaller ARL indicates faster detection of a process shift and also shows a reduced time to signal an out-of-

control condition. The ARL is affected by: sample size, control limits, process variability, shift size, and chart 

type. The ARL is given by 

 

 

ln
ARL

E Z

−
= . 

 

where 
( )

( )
1 1

0 0

, , ,

, , ,

f x
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Using the PDF given in (1) then 
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This is simplified as 

 

( )( ) ( )( )0 0 1 11
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x x x x

Z e
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Taking the natural logarithm of (16) yields 

 

( )( ) ( )( )0 0 1 11
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ln ln
x x x x

Z e
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     
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=  
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Taking expectation of both sides gives 

 

     ( )( )    ( )( )1

0 0 1 1
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ln lnE Z E x E x E x E x
  
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
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Simplifying further gives 
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(19) 

 

By definition, 
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Substituting (2) into the integral yields 
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  ( )
( )( )

1
x x
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This implies 
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Simplifying gives 
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And 
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1
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Substituting the expression for  E x  into (20) produces 
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Simplify further gives 
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The ARL is finally expressed as 
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Right-side changes in gamma value increase the value of the ARL whereas a left-side shift in gamma decreases 

ARL. The details are shown in Table 9. 

 

The ARL also increases in value when lambda is increased (2 to 4.1) with a right-side shift in gamma. And 

decreases in value with a left-side shift in gamma as displayed in Table 10. 

 

A decrease (2 to 0.5) in the value of lambda with a right-side shift in the value of gamma increases the value of 

the ALR whereas the same decrease in lambda with a left-side shift in the value of gamma produces a 

decreasing ARL. The details are shown in Table 11. 
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Both increase (0.1 to 0.9) and decrease (0.1 to 0.01) in alpha, with a right-side shift in gamma slowly increasing 

the value of the ARL as detailed in Table 12. 

Table 9. Effect of right and left sides shifts in gamma on the ARL 

 

0
  

1
        ARL 

7 12 3 2 0.1 - 1.9891 

7 13.5 3 2 0.1 - 1.5248 

7 14.6 3 2 0.1 - 1.3013 

7 16.5 3 2 0.1 - 1.0376 

7 17.5 3 2 0.1 - 0.9374 

7 19.0 3 2 0.1 - 0.8185 

7 21.4 3 2 0.1 - 0.6802 

7 22.5 3 2 0.1 - 0.6312 

7 25.8 3 2 0.1 - 0.5189 

7 27.1 3 2 0.1 - 0.4660 

0
  

1
        ARL 

7 6.85 3 2 0.1 67.5629 

7 6.2 3 2 0.1 12.7162 

7 5.9 3 2 0.1 9.2660 

7 5.4 3 2 0.1 6.3930 

7 5.1 3 2 0.1 4.4731 

7 4.7 3 2 0.1 3.8251 

7 4.3 3 2 0.1 3.3461 

7 3.9 3 2 0.1 2.9784 

7 3.5 3 2 0.1 2.6254 

7 3.0 3 2 0.1 2.2648 

7 2.3 3 2 0.1 2.1089 

 

Table 10. Increase in the value of lambda with right and left shifts in gamma 

 

0
  

1
        ARL 

7 12 3 4.1 0.1 - 1.9850 

7 13.5 3 4.1 0.1 - 1.5219 

7 14.6 3 4.1 0.1 - 1.2989 

7 16.5 3 4.1 0.1 - 1.0359 

7 17.5 3 4.1 0.1 - 0.9359 

7 19.0 3 4.1 0.1 - 0.8173 

7 21.4 3 4.1 0.1 - 0.6792 

7 22.5 3 4.1 0.1 - 0.6303 

7 25.8 3 4.1 0.1 - 0.5182 

7 27.1 3 4.1 0.1 - 0.4842 

0
  

1
        ARL 

7 6.85 3 4.1 0.1 67.3758 

7 6.2 3 4.1 0.1 12.6790 

7 5.9 3 4.1 0.1 9.2383 

7 5.4 3 4.1 0.1 6.3729 

7 5.1 3 4.1 0.1 5.3789 

7 4.7 3 4.1 0.1 4.4580 

7 4.3 3 4.1 0.1 3.8116 

7 3.9 3 4.1 0.1 3.3337 
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7 3.5 3 4.1 0.1 2.9668 

7 3.0 3 4.1 0.1 2.6144 

7 2.3 3 4.1 0.1 2.2541 

Table 11. Effect of decrease in lambda with right and left shifts in gamma 

 

0
  

1
        ARL 

7 12 3 0.5 0.1 - 1.9970 

7 13.5 3 0.5 0.1 - 1.5305 

7 14.6 3 0.5 0.1 - 1.3059 

7 16.5 3 0.5 0.1 - 1.0410 

7 17.5 3 0.5 0.1 - 0.9404 

7 19.0 3 0.5 0.1 - 0.8210 

7 21.4 3 0.5 0.1 - 0.6821 

7 22.5 3 0.5 0.1 - 0.6329 

7 25.8 3 0.5 0.1 - 0.5202 

7 27.1 3 0.5 0.1 - 0.4860 

0
  

1
        ARL 

7 6.85 3 0.5 0.1 67.9282 

7 6.2 3 0.5 0.1 12.7887 

7 5.9 3 0.5 0.1 9.3203 

7 5.4 3 0.5 0.1 6.4322 

7 5.1 3 0.5 0.1 5.4303 

7 4.7 3 0.5 0.1 4.5026 

7 4.3 3 0.5 0.1 3.8515 

7 3.9 3 0.5 0.1 3.3703 

7 3.5 3 0.5 0.1 3.0012 

7 3.0 3 0.5 0.1 2.6471 

7 2.3 3 0.5 0.1 2.2860 

 

Table 12. Increase in alpha with a right-side shift in gamma 

 

0
  

1
        ARL 

7 12.0 3 2 0.9 - 1.0795 

7 13.5 3 2 0.9 - 0.8284 

7 14.6 3 2 0.9 - 0.7074 

7 16.5 3 2 0.9 - 0.5646 

7 17.5 3 2 0.9 - 0.5103 

7 19.0 3 2 0.9 - 0.4458 

7 21.4 3 2 0.9 - 0.3708 

7 22.5 3 2 0.9 - 0.3442 

7 25.8 3 2 0.9 - 0.2832 

7 27.1 3 2 0.9 - 0.2647 

7 27.9 3 2 0.9 - 0.2544 

0
  

1
        ARL 

7 12.0 3 2 0.01 - 3.0122 

7 13.5 3 2 0.01 - 2.3089 

7 14.6 3 2 0.01 - 1.9702 

7 16.5 3 2 0.01 - 1.5709 

7 17.5 3 2 0.01 - 1.4190 

7 19.0 3 2 0.01 - 1.2390 

7 21.4 3 2 0.01 - 1.0295 

7 22.5 3 2 0.01 - 0.9553 

7 25.8 3 2 0.01 - 0.7852 

7 27.1 3 2 0.01 - 0.7337 

7 27.9 3 2 0.01 - 0.7052 
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The ARL also decreases in value when alpha is increased (0.1 to 0.9) and decreases (0.1 to 0.01) with a left-side 

shift in gamma as shown in Table 13. 

 

Table 13. Increase in alpha with a left-side shift in gamma 

 

0
  

1
        ARL 

7 6.85 3 2 0.9 36.4686 

7 6.2 3 2 0.9 6.8562 

7 5.9 3 2 0.9 4.9932 

7 5.4 3 2 0.9 3.4414 

7 5.1 3 2 0.9 2.9028 

7 4.7 3 2 0.9 2.4038 

7 4.3 3 2 0.9 2.0532 

7 3.9 3 2 0.9 1.7938 

7 3.5 3 2 0.9 1.5944 

7 3.0 3 2 0.9 1.4023 

7 2.3 3 2 0.9 1.2048 

0
  

1
        ARL 

7 6.85 3 2 0.01 102.3800 

7 6.2 3 2 0.01 19.2717 

7 5.9 3 2 0.01 14.0439 

7 5.4 3 2 0.01 9.6907 

7 5.1 3 2 0.01 8.1804 

7 4.7 3 2 0.01 6.7818 

7 4.3 3 2 0.01 5.8001 

7 3.9 3 2 0.01 5.0745 

7 3.5 3 2 0.01 4.5178 

7 3.0 3 2 0.01 3.9834 

7 2.3 3 2 0.01 3.4380 

 

7 Practical Demonstration  
 

In this section, the developed CUSUM chart is evaluated with random numbers generated from the distribution 

and real dataset from the world of work. 

 

Table 14. Practical illustration with random numbers 

 

x   Log (x) CUSUM 

5.1259 1.6343 1.6 

2816.6450 7.9433 9.5 

227.9300 5.4249 14.9 

17.6351 2.8699 17.8 

296.9666 5.6902 23.5 

145.8691 4.9827 28.5 

681.4453 6.5242 35.0 

986.7509 6.8944 41.9 

338.4893 5.8245 47.7 

107.6000 4.6784 52.4 

1441.1070 7.2732 59.7 

18.5188 2.9187 62.6 

33.1530 3.5011 66.1 

216.8271 5.3791 71.5 

435.9000 6.0774 77.6 

11.9293 2.4790 80.1 

102.3200 4.6281 84.7 
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43.4645 3.7719 88.5 

9.5314 2.2544 90.8 

77462.2400 11.2575 102.1 

 

7.1 Random sample from the WW distribution 
 

A random sample of size of twenty (20) was drawn from the WWD using the quantile function given in (4) and 

the values are shown in Table 14. 

 

Fig. 2 displays the CUSUM plot of these random numbers. It shows only three points are in control, and the rest 

of the plotted points are outside the left area of the V-mask. It does show the sensitivity of the WWD CUSM 

control chart over the Shewhart chart. 

 

 
 

Fig. 2. V-mask CUSUM of the WWD random numbers 

 

7.2 Temperature dataset 
 

The second dataset is obtained from the Kabsad Scientific Hospital in the Tamale Metropolis in the Northern 

region of Ghana. The data represents the temperature values of some thirty (30) selected patients in the 

outpatient department for September 2024. The observations are as follows: 

 

37.1, 36.9, 36.4, 36.1, 36.4, 36.6, 35.6, 37.0, 36.7, 36.7, 36.2, 36.0, 36.8, 36.6,36.6, 36.0, 36.7, 36.7, 37.1, 36.4, 

36.2, 36.8, 36.5, 37.3, 37.5, 36.3, 36.4, 36.7, 36.2, 36.6. 

 

Fig. 3 shows the mean plot of the temperature dataset and the graph indicates the system is in control since no 

value is plotted outside the control limits. This means that no action is needed to be taken by management. 

 

The V-mask plot of the same temperature dataset is shown in Fig. 4. It indicates only one point is in control and 

the rest of the plotted points are located outside the control limits. This shows the sensitivity of the CUSUM in 

detecting smaller shifts in a process system than the Shewhart control charts. The details are shown in Fig. 4. An 
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out-of-control point on a health monitoring chart can have significant implications for patient care, quality of 

care, and healthcare outcomes. 

 
 

Fig. 3. Shewhart control Chart for the temperature dataset 
 

 
 

Fig. 4. V-mask plot of the temperature dataset 
 

8 Conclusion 
 

The right-side shift in the size of gamma decreases the size of the mask angle whereas the left-side shift in 

gamma increases the size of the mask angle.  The right-side shift in the value of gamma reduces the lead 

distance and the left-side shift in gamma increases the size of the lead distance. If there is a right-side shift in 

gamma and lambda, the lead distance increases and a right-side shift in gamma with a decrease in the lambda 

value decreases the lead distance. Again, a left-side shift in gamma with an increase or decrease in the lambda 

value increases the lead distance's value. Also, an increase or decrease in alpha value decreases the value of lead 

distance when there is a right-side shift in gamma. On the other hand, an increase or decrease in the alpha value 

with a left-side shift in gamma increases the value of the lead distance. Both increase or decrease in the value of 



 
 

 

 
Sayibu et al.; Asian J. Prob. Stat., vol. 26, no. 12, pp. 234-252, 2024; Article no.AJPAS.128079 

 

 

 
251 

 

theta with a right-side shift decreases the value of the lead distance. An increase in the value of theta with a left-

side shift in gamma increases the value of the lead distance and a decrease in theta with a left-side shift in 

gamma decreases the value of the lead distance. Not all but also a right-side shift in gamma increases the value 

of the average run length and a left-side shift in gamma decreases the value of the average run length. An 

increase or a decrease in lambda with a right-side shift in gamma increases the value of the average run length. 

Similarly, an increase or decrease in the value of lambda with a left-side shift decreases the value of the average 

run length. Both increase or decrease in the value of alpha increases in the average run length. Last but not least, 

an increase or a decrease in the alpha with a left-side shift in gamma decreases the average run length. The 

practical demonstration indicates that the proposed constructed cumulative sum control chart is sensitive to 

detecting a slight shift in a process system. An out-of-control point on a health monitoring chart can have 

significant implications for patient care, quality of care, and healthcare outcomes. Other impacts are delayed or 

inadequate treatment, increased morbidity and mortality, decreased quality of life, increased healthcare costs, 

and reduced patient satisfaction. 
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